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Double beta decay

Only
2-v decays
Rate
No backgrounds
above Q-value!
|
0 Energy — Q-value

The ideal result we seek is a spectrum of all 3 events,
with negligible or very small backgrounds.
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TPC: Basic Advantages...

* Fiducial volume surface:
— Single, continuous, fully active, variable,...
— 100% rejection of charged particles (surfaces)
— but: TPC needs a t, to place event in z
* Tracking:
— Avalilable in gas phase only
— Topological rejection of single electron events
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TPC Signal & Backgrounds

-HV plane
Readout plane A Readout plane B
1 Fiducial
) BN volume
\’ g=a surface
n

Signal: gp event or WIMP  Backgrounds
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TPC: Basic Advantages...

 Fiducial volume surface:
— Single, continuous, fully active, variable,...
— 100% rejection of charged particles
— but: TPC needs a t, to place event in z
* Tracking:
— Avalilable in gas phase only
— Topological rejection of single electron events

Energy vresolution ??
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Two questions

What is the best energy resolution that
can be obtained with a

high-pressure xenon gas TPC

* In principle?
* In practice?
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“Intrinsic” Energy Resolution for
lonization at 136Xe Q-value

Q-value of 136Xe = 2480 KeV
W = AE per ion/electron pair = 21.9 eV (depends on E-field)

N = number of ion pairs = Q/W =2.48 x 106eV/22 eV = ~113,000
oy = (FN)"2  ~130 electrons rms @ 2480 keV

F =0.13 - 0.17 for xenon gas; take F = 0.15
OE/E =2.35 x (FW/Q)"?

Answer to question #1:

OE/E ~2.8 x 103 FWHM @ 2480 keV
(xenon gas - intrinsic ionization fluctuations only)
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Xenon: Strong dependence of
energy partitioning on density!

A. Bolotnikov, B. Ramsey [ Nucl. Instr. and Meth. in Phys. Res. A 396 (1997) 360-370
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Fig. 5. Density dependencies of the intrinsic energy resolution (Y%eFWHM) measured for 662 keV gamma-rays.

For p >0.55 g/cm3, energy resolution deteriorates rapidly
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What's happening at densities
p > 0.55 g/cm?3 ?

Two phases of xenon coexist (fog, lace,...)
* High atomic density+ ionization density
= sites of complete recombination,

energy is returned as scintillation & heat
« Landau: = large dE/dx fluctuations

=> non-Gaussian partition of energy

{Scintillation < lonization} (+ HEAT...)
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Impact for WIMP Search

Scintillation (S,) & lonization (S,) are signals
that can be used to reject electron recoils

But:
LXe: S,/S, fluctuations anomalously large

Strong anti-correlations observed for e-recoils
HPXe: S,/S, fluctuations are normal
Maybe,... HPXe is better (...much better) ??

But: S,/S, ratio in HPXe is not yet well-measured
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Energy Resolution (p particles)
in Xenon Gas Detectors

— Intrinsic fluctuations
« Fano factor (partition of energy): small for p < 0.55 g/cm3

— Loss of signal (primary):
« Recombination, quenching by molecular additives (heat)
— Loss of signal (secondary):
« Capture by grids or electronegative impurities
— Gain process fluctuations:
» Avalanche charge gain fluctuations are large
— Gain process stability:
» Positive ion effects, density and mix sensitivity,...
— Long tracks = extended signals
« Baseline shifts, electronic non-linearities, wall effect,...
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Generalization

* If fluctuations are uncorrelated, then*
oy = ((F + L + G)N)2
F = Fano factor = 0.15
L = loss of primary ionization
G = fluctuations & noise in gain process

Goal: Keep L and G smaller than F
Is this possible ??

*
D. Nygren, Nucl. Inst. & Meth. A 581 (2007) 632
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Loss of signal

As long as L << F, losses without correlations™®
to F & G, e.qg., capture on grids, are forgiving:
— ForL=0.05 6E/E ~3 x 10 FWHM @ 2480 keV
— For TPC, | expect that L < 1%, insignificant loss

SetL=0

*Losses to electronegative impurities are highly correlated to drift
distance and each event must receive a specific correction
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Avalanche Charge Gain

Early fluctuations determine outcome
- for wire (E~1/r) 0.6<G<0.9"
* oy =((0.15 + 0.8)N) 2 = 328
« 3E/E =~7.0 x 103 FWHM
Lost all benefit from the small Fano factor
Micromegas, GEM, LEM,... may do better, but
Serious challenges to maintain gain calibration

*Alkhazov G D Nucl. Inst. & Meth. 89 (1970) 155 (for cylindrical proportional counters)
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What is this factor “G”?

* In a very real sense:

G is a measure of the precision with
which a single electron can be counted.

» Consider next:
— lonization Imaging TPC - no gas gain!
— Negative lon TPC - count each electron!
— Electro-Luminescent TPC ?
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“lonization Imaging” TPC

No avalanche gain
e dn/dx ~ 1 fC/cm: = ~6,000 (electron/ion pairs)/cm
« gridless “naked” pixel plane (~5 mm pads)
« very high operational stability

But, electronic noise must be added!
* 0 =50 e rms/pixel
+ G=0%n,= 50%3000 = ~0.8
« SE/E ~ 7 x 103 FWHM

* But: complex signals, many channels, waveform
capture, new,... R&D + E needed
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“Negative lon” TPC

“Counting mode” = digital readout, (F + L)

— Electron capture on electronegative molecule

— Very slow drift to readout plane;

— Strip electron in high field (?), generate avalanche

— Count each “ion” as a separate pulse:
* |on diffusion much smaller than electron diffusion
» Avalanche fluctuations and noise enter only as L
* Pileup and other losses: L~ 0.04 ? uncorrelated?

« 3E/E =~3 x 103 FWHM ?
— Appealing, but will it work in HPXe?...
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Electro-Luminescence (EL)
(aka Proportional Scintillation)

— Electrons drift to high field region

— Electrons gain energy, excite xenon, lose energy
— Xenon generates UV, process starts over again

— Linear, not exponential growth of signal

— Photon generation up to ~1000/e, but no ionization
— Sensitivity to density much smaller than avalanche
— Early history irrelevant, so = Fluctuations small?

— Maybe... G~ F?
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H. E. Palmer & L. A. Braby
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Fig. 1. Sketch of 5 cm diameter parallel plate gas scintillation proportional counter.
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Fig. 2. Pulse-height spectra of an 5°Fe source from a parallel plate gas scintillation proportional counter.
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Fluctuations in EL

G for EL contains three terms:

1. Fluctuations in n, (UV photons pere): o, =Kly ng,
n,, ~ HV/E, = 6600/10 eV ~ 660 K<1
2. Fluctuations in n_, (detected photons/e): o,,=1/y n_,
— N, ~ solid angle x QE x n,, x 0.5=0.1 x 0.25 x 660 x 0.5 ~ 8
3. Fluctuations in PMT single PE response: o,,,~ 0.6

G =0%2=Kl(n,) +(1+0c%,Jn,)~017
Assume F+ G =0.3

|deal energy resolution (o2 = 0.3 x E/W):
OE/E ~4 x 103 FWHM @ 2480keV
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Electro-Luminescent Readout

« Tokeep G <F =0.15, then:

n,. > 10/electron

= 2n,, > 1,000,000 @ 2480 keV !

More would be better!
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Electro-Luminescent Readout

How to detect this much signal?

Answer: Use both TPC readout planes
— If EL signal is generated in plane “A”
— do “tracking” in Plane “A”
— but: record “energy” in plane “B”
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TPC Signal

Transparent HV plane

Readout plane A A/Readout plane B
record
EL signal energy
* .
created here signal
R\,; here
\ o

Signal: Bp event or WIMP
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Pure xenon + EL: energy

Drift velocity: ~ 1 mm/us (slow!)

BB events occur over 10’s of us
Hundreds of PMTs contribute to Zn,,
n.. per PMT in plane B: ~10 per us
— no dynamic range problem in plane B
— gentle cosine effect with solid angle

Energy measurement in plane B: OK
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Pure xenon + EL.: tracking

N.e Per us per PMT in plane A: ~2000
— no saturation problem in plane A

— Trac
— Trac

— Trac

K-finding by center-of-gravity
K resolution: 6 <1 mm

K-pair resolution ~ 10 mm ?

Tracking in plane A: OK
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EL: How much light??

» Boundary condition: n ./electron =10

* Let photon detection efficiency =1

n = solid angle x transparency x QEpyr

Assume reflective TPC field cages
N=m/(4x4n)x2x0.9x0.3=0.03

* ny/electron ~ N o0 XM =10

= N hotons = 300/electron
Can this be done?

DM 2008
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Generation of EL in xenon

dN/dx = 140(E/p - 0.83)p UV photons/cm

 E/p =8 kV/cm-bar is maximum for EL only
e E/p=0.83 kV/cm-bar is minimum for any EL
e best resolution obtained fromE/p~3-8

« Parallel meshes:
gap for 20 bars: <1 mm
difficult,... so what about using...
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Wires!

Wire: E(r) = Eyry/r (fix Eq = 8p)
N = 140 p r,{(Ey/p) In(9) — 5.8}
Nohotons = 1650 p ry =300
= pry20.2 (bar-cm)
= r,=0.01 cm for p = 20 bars Easy!
Let's setry =0.15 cm, then: n,, = 15, G = 0.08

photons

O0E/E = 3.4 x 103 FWHM @ 2480keV
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A Wire Plane for EL

* A single "MWPC" readout plane works
— radius of wire: ry = 0.015 cm (150 um)
— wire spacing: ~ 5 mm
— field wires needed to obtain E; = 8p
— most light generated on “top” of wire

— high transparency obtained automatically
— gap between MWPC and PMT: ~2 Opyt
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Answer to Question #2

» Best practical energy resolution:

TPC with MWPC EL readout planes
 separated function: tracking (A) <= energy (B)

 planes A & B symmetric and equivalent

OE/E =3.4 x 10 FWHM @ 2480keV
« Can radio-purity be good enough?
 What is S,/S, for HPXe (nuclear, electron)?

DM 2008
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1000 kg Xe: @ =225 cm, 2 x L =225 cm
o ~ 0.1 g/cm3 (~20 bars)

0

DM 2008

Sensitive volume
HV cathode plane

GPSC readout planes, optical
gain gap is ~1-2 mm

Flange for gas & electrical
services to readout plane

Filler and neutron absorber,
polyethylene, or liquid
scintillator, or ...

Field cages and HV insulator,
(rings are exaggerated here)
possible site for scintillators
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Some Issues...

« HPXE TPC has ~9x surface area of LXe

“Rejection of single-e events >>30 x LXe”"
"S,/S rejection of e-recoils is much better”

* HPXe: use <1% N,, shift UV to ~340 nm
— Better for PMT QE, no penalty in yield
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Perspective

v Near-intrinsic energy resolution in HPXe EL TPC
v’ lonization signal alone is sufficient to achieve this
v WIMP + 8 search: dual-purpose, no compromise
v keV - MeV energy range: dynamic range OK

v’ Both primary signals recorded by photo-detectors
v’ Scintillation UV for S, & t, automatically available
v EL offers stable, robust operation - no sparks

v  Simple MWPC readout plane appears optimal
v"No cryogenics, easier gas purification,storage,...
v Separated function TPC novel, but well-motivated
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| GRANDE

Electro-Luminescence:
Great Rewards Await NEXT Double- Experiment

DM 2008
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BEGIKUD Slides




R&D Summary

« Measure S,/S, ratios and resolutions

« for both neutrons and gammas in HPXe
* versus p, N, admixtures

* Determine radio-purity requirements

« Simulations, for neutron & gamma rejection
« PMTs
* Pressure containment, TPC HV, etc,...
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Germanium Diodes

Fano factor: similar to xenon gas: ~0.13 =0.02

Energy per electron-ion pair: 2.96 eV
More carriers = Ge diodes better by (22/3)12 = 2.77
SE/E ~1 x 103 FWHM @ 2480 keV, germanium, ideal
OE/E ~2.4 x 10 FWHM @ 2480 keV germanium, real

Why aren’t Ge diodes as good as Ge (ideal)?

Factors: electronic noise, edge effects, trapping,
complex interactions: Compton, photo-conversion...

DM 2008
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AE: Three Pathways

 When a particle loses energy in xenon, where
does the energy go?
— lonization
— Scintillation: VUV ~170 nm (t4, 7, ...)
— Heat!
* How is the energy partitioned?
— Responses differ for a, 3, nuclei
— Dependence on xenon density p, E-field
— Processes still not completely understood
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High-pressure Xenon Gas (HPXe)
lonization Chambers

Positive ions cause a pulse defect - very low mobility
— Screen grids help, but screening is imperfect

Microphonic noise is a serious problem

— absent in germanium diodes
Electronic noise is significant.

— Signals are much smaller than germanium: 3/22 = 1/7
Electronegative impurities may capture electrons.

— Ratio of electron lifetime to drift length must be ~1000
Extended track length at MeV energies?

— Edge effects, pulse shape variations
Geminate recombination depends on E field

— Substantial effect in cylindrical ionization chambers (1/r)
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Liquid xenon

EXO: LXe TPC

A strong anti-
correlation is
observed between
scintillation and
lonization signals

*Anti-correlation
also observed in all
other LXe data

SE/E = 33103 FWHM
0Ov—Pp, Q = 2480 keV

sWhat about the tails?

lonization
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“Effective Fano Factor” for LXe

Conti et al: “F” ~ 20 to match their LXe data
Compare: LXe/HPXe Fano factors: (“207/0.15)"2 = 11.5

OE/E =2.35 x (FW/Q)"2 = 31 x 10-* FWHM

Anti-correlation (use it!):

Using both the scintillation and ionization signals together allows
recovery of the total signal (except for heat).

But: in practice, only a fraction of the light can be detected; the
energy resolution in LXe cannot be as good as intrinsic.

The impact of energy lost to heat on resolution is unknown.
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Molecular physics of xenon

 Macroscopic:
— Critical temperature of xenon: room temperature
— Gas & liquid phases can coexist together at normal temp
— Strong departures from ideal gas law: high compressibility
 Microscopic:
— For densities above ~0.5 g/cm3, fog or lacework forms

— Aggregates form a localized quasi-conduction band
— lonization process = very non-uniform dE/dx

— Recombination is ~ complete in the regions of high qg/v
— Recombination increases scintillation, reduces ionization

=> A non-gaussian partition of energy between
ionization & scintillation occurs for p >0.5 g/cm3
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"Gotthard TPC”

Pioneer TPC detector for 0O-v 3 decay search

— 5 bars, enriched 3%Xe (3.3 kg) + 4% CH,

— MWPC readout plane, wires ganged for energy
— No scintillation detection =

* no TPC start signal!
 No measurement of drift distance!

— 8E/E ~ 80 x 103 FWHM (1592 keV)

= 66 x 103 FWHM (2480 keV)

Reasons for this less-than-optimum resolution are not clear...
Likely: uncorrectable losses to electronegative impurities
Possible: Undetectable losses to quenching (4% CH,)
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Fig.7. Dependence of ionization yield on reduced electric field (E/N) at a
(~25 bars)

pressure of 2.6 MPa.
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K. N. Pushkin et al, 2004

IEEE Nuclear Science
Symposium proceedings

A scary result: adding a tiny
amount of simple molecules
(CH,, N,, H, ) to HPXe
gquenches both ionization
and scintillation for a’s

a particle: dE/dx is very high

Gotthard TPC: 4% CH,
Loss(a): factor of 6

For  particles, what was
effect on energy resolution?

Surely small but not known,
and needs investigation
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Molecular Chemistry of Xenon

 Scintillation:
« Excimer formation: Xe*+ Xe — Xez* — hv + Xe
« Recombination: Xe* + e~ — Xe* —
* Density-dependent processes also exist:
Xe* + Xe* = Xe™™ — Xe*+ e + heat

* Two excimers are consumed to make one photon!
* More likely for both high p + high ionization density

— Quenching of both ionization and scintillation can occur!
Xe*+ M — Xe + M* — Xe + M + heat (similarly for Xe,*, Xe**, Xe,**...)
Xe* + e~(hot) + M — Xe* + e~(cold) + M* —

Xe* + e7(cold) + M + heat — e~(cold) + Xe™ — Xe*
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Barium daughter tagging
and ion mobilities...

« Ba* and Xe* mobilities are quite different!

— The cause is resonant charge exchange
— RCE is macroscopic quantum mechanics
 occurs only for ions in their parent gases
* NO energy barrier exists for Xe* in xenon
» energy barrier exists for Ba ions in xenon
« RCE is a long-range process: R >>r_,,
 glancing collisions = back-scatter

RCE increases viscosity of majority ions

DM 2008
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Barium daughter tagging
and ion mobilities...

Ba**ion survives drift: IP = 10.05 eV
 |IP of xenonis 12.14 eV
Ba** ion arrives at HV plane, well ahead of all other Xe* ions
» Mobility difference, ~50%, is known to be true at low density
Ba** ion liberates at least one electron at cathode surface
« May be an unrealistic fantasy
Electrons drift back to anode plane, make detectable signal
* Arriving electron signal serves as “echo” of the Ba** ion,

A very strong constraint on event validity is obtained:
* Process is automatic!

Clustering effects are likely to alter this picture!
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Signal Out 4—@ HV In

~ A small test chamber
can show whether ion
mobility differences
persist at higher gas
density (no data now).

Resistor Capacitor
Network

" T1—lon Detection
(Co-Planar Grid)

This could offer an auto-
_lonsource Matic method to tag the
Senemate “birth” of barium in the
decay, by sensing an echo
pulse if the barium ion

il causes a secondary
emission of one or more
electrons at the cathode.
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